Operators with Singular Continuous Spectrum: Ii. Rank One Operators
نویسندگان
چکیده
For an operator, A, with cyclic vector φ, we study A+ λP where P is the rank one projection onto multiples of φ. If [α,β] ⊂ spec(A) and A has no a.c. spectrum, we prove that A + λP has purely singular continuous spectrum on (α, β) for a dense Gδ of λ’s. §
منابع مشابه
Operators with Singular Continuous Spectrum, Iv. Hausdorff Dimensions, Rank One Perturbations, and Localization
متن کامل
Friedrichs Model Operators of Absolute Type with One Singular Point
Problems of existence of the singular spectrum on the continuous spectrum emerges in some mathematical aspects of quantum scattering theory and quantum solid physics. In the latter field, this phenomenon results from physical effects such as the Anderson transitions in dielectrics. In the study of this problem, selfadjoint Friedrichs model operators play an important part and constitute quite a...
متن کاملOperators with Singular Continuous Spectrum, Iv. Hausdorff Dimensions, Rank One Perturbations, and Localization
Although concrete operators with singular continuous spectrum have proliferated recently [7,11,13,17,34,35,37,39], we still don’t really understand much about singular continuous spectrum. In part, this is because it is normally defined by what it isn’t — neither pure point nor absolutely continuous. An important point of view, going back in part to Rodgers and Taylor [27,28], and studied recen...
متن کاملSingular Continuous Spectrum Is Generic
In a variety of contexts, we prove that singular continuous spectrum is generic in the sense that for certain natural complete metric spaces of operators, those with singular spectrum are a dense Gδ . In the spectral analysis of various operators of mathematical physics, a key step, often the hardest, is to prove that the operator has no continuous singular spectrum, that is, that the spectral ...
متن کاملSingular Continuous Spectrum for Certain Quasicrystal Schrödinger Operators
We give a short introduction into the theory of one-dimensional discrete Schrödinger operators associated to quasicrystals. We then report on recent results, obtained in jont work with D. Damanik, concerning a special class of these operators viz Quasi-Sturmian operators. These results show, in particular, uniform singular continuous spectrum of Lebesgue measure zero.
متن کامل